

Fig. 1. Sketch showing wing, trailing-vortex wake, and "Trefftz Plane."

presumed to be unknown; viz., we shall write for the downwash (uniform across the span) far downstream

Downwash far downstream =
$$k \frac{C_L}{\pi R} = 2k \frac{L}{\pi \rho V b^2}$$

The x-forces acting on the system are 1) the thrust, equal and opposite to the drag D, and 2) the resultant of the pressure perturbations acting on a transverse yz-plane downstream. The change of x-impulse effected by these forces is also calculated by integration over this transverse plane. The momentum balance therefore reads

$$-D - \iint (p - p_{\infty}) dy dz = \rho V \iint (u - V) dy dz$$
 (2)

Now, the pressure is given by Bernoulli's Equation

$$p - p_{\infty} = \frac{\rho}{2} \{ V^2 - (u^2 + v^2 + w^2) \}$$
 (3)

where u, v, w are the usual Cartesian velocity components and the flow field far downstream consists of two-dimensional flow in planes normal to the trailing-vortex sheet, which is inclined downward at the angle $k\alpha_i$ mentioned above. Thus, u, v, and w can be expressed in terms of the velocity potential $\varphi(y, z + xk\alpha_i)$, say, of this two-dimensional flow. To second order, they are

$$u = V + \varphi_z k \alpha_i, \quad v = \varphi_y, \quad w = \varphi_z \tag{4}$$

so that Eq. (3) becomes, to second order

$$p - p_{\infty} = -\frac{\rho}{2} \left\{ 2V \varphi_z k \alpha_i + \varphi_y^2 + \varphi_z^2 \right\}$$
 (5)

and Eq. (2) becomes

$$-D + \rho Vk\alpha_{i} \iint \varphi_{z} dy dz + \frac{\rho}{2} \iint (\varphi_{y}^{2} + \varphi_{z}^{2}) dy dz$$

$$= \rho V k \alpha_i \iint \varphi_z dy dz \tag{6}$$

or

$$D = \frac{\rho}{2} \iint (\varphi_y^2 + \varphi_z^2) dy dz \tag{7}$$

But this is exactly the statement relating drag to kinetic energy, mentioned above; we have therefore arrived at the familiar result for elliptic lift distribution1,2

$$D = (C_L/\pi R)L = (2L^2/\pi \rho V^2 b^2)$$
 (8)

The first interesting feature of this calculation is that the induced angle $k\alpha_i$ far downstream has disappeared from consideration. The x-impulse term on the right-hand side is $k\alpha_i$ times the z-impulse, which is -L; thus it is -ktimes the drag; nevertheless it is cancelled by a pressure contribution in the left-hand side, and the correct answer is obtained for any value of k.

A second interesting feature is that the net pressure contribution is a force directed upstream. This follows from what has just been said, for the first integral on the left-hand side of Eq. (6) is -kD, namely -2D, and the second integral is +D. Thus one's usual concept—at least the author's-wherein the drag is balanced by reduced pressures downstream, seems to be incorrect. The correct picture involves generally increased pressures downstream, accompanied by upwind-directed induced veloci-

It is also instructive (and makes a fine homework problem!) to carry out this calculation in a stream-fixed frame of reference. It must then be remembered that the trailing-vortex wake is moving downward in this frame, and unsteady-flow formulas must be used to obtain the correct pressure. When this is done, the results are, of course, identical to those of the present note.

Finally, the generalization to a wing-system having arbitrary spanwise lift distribution can easily be carried out. As long as u is given by a second-order perturbation added to V, as is true far downstream for all small-perturbation cases, the x-impulse integral on the right-hand side of Eq. (2) is cancelled by a term in the pressure integral, and Eq. (7) results. This calculation is made by Landau and Lifshitz,3 but their argument has serious flaws, such as the claim that the x-impulse integral

$$\rho \iint (u - V) dy dz$$

is zero. As we have seen, it is actually proportional to the lift L in the classical case of elliptic lift distribution. The error arises from insufficient care in applying the principles of continuity and momentum in an infinite domain.

References

1von Kármán, T. and Burgers, J., General Aerodynamic Theory-Perfect Fluids. Vol. II Aerodynamic Theory, edited by W. F. Durand, Sec. IIIB, Springer-Verlag, Berlin, 1935, pp. 127 and 128. ²Incompressible Aerodynamics, edited by B. Thwaites, Oxford,

New York, 1960, p. 304.

³Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon Press, New York, 1959, pp. 174, 176.

On the Dependence of Materials **Erosion on Environmental Parameters** at Supersonic Velocities

George F. Schmitt Jr. Wright-Patterson Air Force Base, Ohio

[J. Aircraft 10, 705 (1973)]

THE following footnote was inadvertently omitted: "Received September 28, 1972; revision received August 9, 1973."

Received January 1, 1974.

Index categories: Materials, Properties of; Structural Composite Materials (Including Loads); Hypervelocity Impact.